Next Previous Contents

13. Troubleshooting

See Modem-HOWTO for troubleshooting related to modems or getty for modems.

13.1 Serial Electrical Test Equipment

Breakout Gadgets, etc.

While a multimeter (used as a voltmeter) may be all that you need for just a few terminals, simple special test equipment has been made for testing serial port lines. Some are called "breakout ... " where breakout means to break out conductors from a cable. These gadgets have a couple of connectors on them and insert into the serial cable. Some have test points for connecting a voltmeter. Others have LED lamps which light when certain modem control lines are asserted (turned on). Still others have jumpers so that you can connect any wire to any wire. Some have switches.

Radio Shack sells (in 1998) a "RS-232 Troubleshooter" or "RS-232 Line Tester" which checks TD, RD, CD, RTS, CTS, DTR, and DSR. A green light means on (+12 v) while red means off (-12 v). They also sell a "RS-232 Serial Jumper Box" which permits connecting the pins anyway you choose.

Measuring Voltages

Any voltmeter or multimeter, even the cheapest that sells for about $10, should work fine. Trying to use other methods for checking voltage is tricky. Don't use a LED unless it has a series resistor to reduce the voltage across the LED. A 470 ohm resistor is used for a 20 ma LED (but not all LED's are 20 ma). The LED will only light for a certain polarity so you may test for + or - voltages. Does anyone make such a gadget for automotive circuit testing?? Logic probes may be damaged if you try to use them since the TTL voltages for which they are designed are only 5 volts. Trying to use a 12 V incandescent light bulb is not a good idea. It won't show polarity and due to limited output current of the UART it probably will not even light up.

To measure voltage on a female connector you may plug in a bent paper clip into the desired opening. The paper clip's diameter should be no larger than the pins so that it doesn't damage the contact. Clip an alligator clip (or the like) to the paper clip to connect up.

Taste Voltage

As a last resort, if you have no test equipment and are willing to risk getting shocked (or even electrocuted) you can always taste the voltage. Before touching one of the test leads with your tongue, test them to make sure that there is no high voltage on them. Touch both leads (at the same time) to one hand to see if they shock you. Then if no shock, wet the skin contact points by licking and repeat. If this test gives you a shock, you certainly don't want to use your tongue.

For the test for 12 V, Lick a finger and hold one test lead in it. Put the other test lead on your tongue. If the lead on your tongue is positive, there will be a noticeable taste. You might try this with flashlight batteries first so you will know what taste to expect.

13.2 Serial Monitoring/Diagnostics

A few Linux programs will monitor the modem control lines and indicate if they are positive (1) or negative (0). See section Serial Monitoring/Diagnostics

13.3 (The following subsections are in both the Serial and Modem HOWTOs)

13.4 My Serial Port is Physically There but Can't be Found

If a device (such as a modem) give evidence of working, then the serial port that it's on has been found. If it doesn't work at all, then you need to make sure your serial port can be found.

Check the BIOS menus and BIOS messages. For the PCI bus use lspci or scanpci. If it's an ISA bus PnP serial port, try "pnpdump --dumpregs" and/or see Plug-and-Play-HOWTO. Using "scanport" will scan all ISA bus ports and may discover an unknown port that could be a serial port (but it doesn't probe the port). It could hang your PC. You may try probing with setserial. See Probing. If nothing seems to get thru the port it may be accessible but have a bad interrupt. See Extremely Slow: Text appears on the screen slowly after long delays. Use setserial -g to see what the serial driver thinks and check for IRQ and I0 address conflicts. Even if you see no conflicts the driver may have incorrect information and conflicts may still exist.

If two ports have the same IO address then probing it will erroneously indicate only one port. Plug-and-play detection will find both ports so this should only be a problem if at least one port is not plug-and-play. All sorts of errors may be reported/observed for devices illegally "sharing" a port but the fact that there are two devices on the same a port doesn't seem to get detected (except hopefully by you). In the above case, if the IRQs are different then probing for IRQs with setserial might "detect" this situation by failing to detect any IRQ. See Probing.

13.5 Extremely Slow: Text appears on the screen slowly after long delays

It's likely mis-set/conflicting interrupts. Here are some of the symptoms which will happen the first time you try to use a modem, terminal, or printer. In some cases you type something but nothing appears on the screen until many seconds later. Only the last character typed may show up. It may be just an invisible <return> character so all you notice is that the cursor jumps down one line. In other cases where a lot of data should appear on the screen, only a batch of about 16 characters appear. Then there is a long wait of many seconds for the next batch of characters. You might also get "input overrun" error messages (or find them in logs).

For more details on the symptoms and why this happens see

Interrupt Problem Details and/or Interrupt Conflicts and/or Mis-set Interrupts. If it involves Plug-and-Play devices, see also Plug-and-Play-HOWTO.

As a quick check to see if it really is an interrupt problem, set the IRQ to 0 with "setserial". This will tell the driver to use polling instead of interrupts. If this seems to fix the "slow" problem then you had an interrupt problem. You should still try to solve the problem since polling uses excessive computer resources and sometimes drastically decreases your thruput.

Checking to find the interrupt conflict may not be easy since Linux supposedly doesn't permit any interrupt conflicts and will send you a /dev/ttyS?: Device or resource busy error message if it thinks you are attempting to create a conflict. But a real conflict can be created if "setserial" has incorrect information. Thus using "setserial" will not reveal the conflict (nor will looking at /proc/interrupts which bases its info on "setserial"). You still need to know what "setserial" thinks so that you can pinpoint where it's wrong and change it when you determine what's really set in the hardware.

What you need to do is to check how the hardware is set by checking jumpers or using PnP software to check how the hardware is actually set. For PnP run either "pnpdump --dumpregs" (if ISA bus) or run "lspci" (if PCI bus). Compare this to how Linux (e.g. "setserial") thinks the hardware is set.

13.6 Somewhat Slow: I expected it to be a few times faster

One reason may be that whatever is on the serial port (such as a modem, terminal, printer) doesn't work as fast as you thought it did.

Another possible reason is that the serial driver thinks you have an obsolete serial port (UART 8250,16450 or early 16550). See What Are UARTs?. Use "setserial -g /dev/ttyS*". If it shows anything less than a 16550A, this is likely your problem. Then if "setserial" has it wrong, change it. See What is Setserial for more info. Of course if you really do have an obsolete serial port, lying about it to setserial will only make things worse.

13.7 The Startup Screen Show Wrong IRQs for the Serial Ports.

Linux does not do any IRQ detection on startup. When the serial module loads it only does serial device detection. Thus, disregard what it says about the IRQ, because it's just assuming the standard IRQs. This is done, because IRQ detection is unreliable, and can be fooled. But if and when setserial runs from a start-up script, it changes the IRQ's and displays the new (and hopefully correct) state on on the startup screen. If the wrong IRQ is not corrected by a later display on the screen, then you've got a problem.

So, even though I have my ttyS2 set at IRQ 5, I still see

ttyS02 at 0x03e8 (irq = 4) is a 16550A
at first when Linux boots. (Older kernels may show "ttyS02" as "tty02") You have to use setserial to tell Linux the IRQ you are using.

13.8 "Cannot open /dev/ttyS?: Permission denied"

Check the file permissions on this port with "ls -l /dev/ttyS?"_ If you own the ttyS? then you need read and write permissions: crw with the c (Character device) in col. 1. It you don't own it then it should show rw- in cols. 8 & 9 which means that everyone has read and write permission on it. Use "chmod" to change permissions. There are more complicated ways to get access like belonging to a "group" that has group permission.

13.9 "Operation not supported by device" for ttyS?

This means that an operation requested by setserial, stty, etc. couldn't be done because the kernel doesn't support doing it. Formerly this was often due to the "serial" module not being loaded. But with the advent of PnP, it may likely mean that there is no modem (or other serial device) at the address where the driver (and setserial) thinks it is. If there is no modem there, commands (for operations) sent to that address obviously don't get done. See What is set in my serial port hardware?

If the "serial" module wasn't loaded but "lsmod" shows you it's now loaded it might be the case that it's loaded now but wasn't loaded when you got the error message. In many cases the module will automatically loaded when needed (if it can be found). To force loading of the "serial" module it may be listed in the file: /etc/modules.conf or /etc/modules. The actual module should reside in: /lib/modules/.../misc/serial.o.

13.10 "Cannot create lockfile. Sorry"

When a port is "opened" by a program a lockfile is created in /var/lock/. Wrong permissions for the lock directory will not allow a lockfile to be created there. Use "ls -ld /var/lock" to see if the permissions are OK: usually rwx for everyone (repeated 3 times). If it's wrong, use "chmod" to fix it. Of course, if there is no "lock" directory no lockfile can be created there. For more info on lockfiles see What Are Lock Files

13.11 "Device /dev/ttyS? is locked."

This means that someone else (or some other process) is supposedly using the serial port. There are various ways to try to find out what process is "using" it. One way is to look at the contents of the lockfile (/var/lock/LCK...). It should be the process id. If the process id is say 261 type "ps 261" to find out what it is. Then if the process is no longer needed, it may be gracefully killed by "kill 261". If it refuses to be killed use "kill -9 261" to force it to be killed, but then the lockfile will not be removed and you'll need to delete it manually. Of course if there is no such process as 161 then you may just remove the lockfile but in most cases the lockfile should have been automatically removed if it contained a stale process id (such as 261).

13.12 "/dev/ttyS?: Device or resource busy"

This means that the device you are trying to access (or use) is supposedly busy (in use) or that a resource it needs (such as an IRQ) is supposedly being used by another device. Sometimes it actually is "busy" but in other cases it erroneously appears to be "busy".

The ``resource busy'' part often means (example for ttyS2) ``You can't use ttyS2 since another device is using ttyS2's interrupt.'' The potential interrupt conflict is inferred from what "setserial" thinks. A more accurate error message would be ``Can't use ttyS2 since the setserial data (and kernel data) indicates that another device is using ttyS2's interrupt''. If two devices use the same IRQ and you start up only one of the devices, everything is OK because there is no conflict yet. But when you next try to start the second device (without quitting the first device) you get a "... resource busy" error message. This is because the kernel only keeps track of what IRQs are actually in use and conflicts don't happen unless the devices are in use (open).

There are two possible cases when you see this message:

  1. There may be a real interrupt conflict that is being avoided.
  2. Setserial has it wrong and the only reason ttyS2 can't be used is that setserial erroneously predicts a conflict.

What you need to do is to find the interrupt setserial thinks ttyS2 is using. This is easier said than done since you can't use the "setserial" command for ttyS2 since the IRQ for ttyS2 is supposedly "busy" and you will get the same "... busy" error message. To fix this either reboot or: exit or gracefully kill all likely conflicting processes. If you reboot: 1. Watch the boot-time messages for the serial ports. 2. Hope that the file that runs "setserial" at boot-time doesn't (by itself) create the same conflict again.

If you think you know what IRQ ttyS2 is using then you may look at /proc/interrupts to find what else (besides another serial port) is currently using this IRQ. You might also want to double check that any suspicious IRQs shown here (and by "setserial") are correct (the same as set in the hardware). A way to test whether or not it is a potential interrupt conflict is to set the IRQ to 0 (polling) using "setserial". Then if the busy message goes away, it was likely a potential interrupt conflcit. It's not a good idea to leave it permanently set at 0 since more CPU resources will be used.

13.13 Troubleshooting Tools

These are some of the programs you might want to use in troubleshooting:


Next Previous Contents